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a b s t r a c t

The initial value problem of convex conservation laws, which includes the famous Burgers’
(inviscid) equation, plays an important rule not only in theoretical analysis for conserva-
tion laws, but also in numerical computations for various numerical methods. For example,
the initial value problem of the Burgers’ equation is one of the most popular benchmarks in
testing various numerical methods. But in all the numerical tests the initial data have to be
assumed that they are either periodic or having a compact support, so that periodic bound-
ary conditions at the periodic boundaries or two constant boundary conditions at two far
apart spatial artificial boundaries can be used in practical computations. In this paper for
the initial value problem with any initial data we propose exact boundary conditions at
two spatial artificial boundaries, which contain a finite computational domain, by using
the Lax’s exact formulas for the convex conservation laws. The well-posedness of the ini-
tial-boundary problem is discussed and the finite difference schemes applied to the artifi-
cial boundary problems are described. Numerical tests with the proposed artificial
boundary conditions are carried out by using the Lax–Friedrichs monotone difference
schemes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In this paper we propose exact artificial boundary conditions at two artificial boundaries, which contain a finite compu-
tational domain, for the initial value problem of convex conservations:
@

@t
uþ @

@x
f ðuÞ ¼ 0 for ðx; tÞ 2 R � Rþ; ð1:1Þ

uðx; 0Þ ¼ u0ðxÞ for x 2 R; ð1:2Þ
where the flux f ðuÞ satisfies the convex condition:
f 00ðuÞ > 0 for u 2 ½inf
x

u0ðxÞ; sup
x

u0ðxÞ�: ð1:3Þ
The initial value problem of convex conservation laws, which includes the famous Burgers’ (inviscid) equation,
@

@t
uþ @

@x
u2 ¼ 0
. All rights reserved.
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plays an important rule not only in theoretical analysis for conservation laws, but also in numerical computations for various
numerical methods. For example, the initial value problem of the Burgers’ equation is one of the most popular benchmarks in
testing various numerical methods, see for example [2,3,5,7,16]. But in all the numerical tests the initial data have to be as-
sumed that they are either periodic or having a compact support, here the compact support means that u0ðxÞ ¼ const: for
jxj � 1, so that periodic boundary conditions at the periodic boundaries or two constant boundary conditions at two far apart
spatial artificial boundaries can be used in practical computations. In this paper for the initial value problems with any initial
data we propose exact boundary conditions at two spatial artificial boundaries, which contain a bounded computational do-
main, by using the Lax’s exact formulas for convex conservation laws. The well-posedness of the artificial boundary problems
is discussed and the monotone difference schemes applied to the artificial boundary problems are described. Computing the
entropy solution numerically by using the explicit formulas is addressed. Numerical tests with the artificial boundary con-
ditions are carried out by using the Lax–Friedrichs monotone difference schemes.
2. Well-posedness for the initial-boundary value problem of scalar conservation laws

We consider the following initial-boundary value problem
@

@t
uþ @

@x
f ðuÞ ¼ 0 for ðx; tÞ 2 ðx�; xþÞ � Rþ; ð2:1Þ

uðx;0Þ ¼ u0ðxÞ for x 2 ðx�; xþÞ; ð2:2Þ
uðx�; tÞ ¼ u�ðtÞ; uðxþ; tÞ ¼ uþðtÞ for t 2 Rþ; ð2:3Þ
where x� and xþ are two spatial boundaries with x� < xþ and u�ðtÞ and uþðtÞ are two boundary data.
It is well known that the initial-boundary value problem (2.1)–(2.3) is usually not well posed if the boundary values (2.3)

are assumed in the strong sense. Following the pioneering work by Bardos et al. [1] the boundary conditions (2.3) have to be
satisfied in the following (weak) sense:
�ðsgnðuðx�; tÞ � kÞ � sgnðu�ðtÞ � kÞÞðf ðuðx�; tÞÞ � f ðkÞÞ 6 0 8k 2 R; ð2:30Þ
where the function of sgn is defined by
sgnðxÞ ¼
x=jxj x–0;
0 x ¼ 0:

�
ð2:4Þ
We note that when f is linear, then (2.30) requires u to be equal to the given boundary data u�ðtÞ only on the inflow boundaries
(where �f 0jx� 6 0) but does not impose any boundary condition on the outflow boundaries (where �f 0jx� P 0).

More generally, Bardos et al. [1] proved that viscous solutions ue satisfying the following initial-boundary parabolic equa-
tion with a small viscosity parameter e > 0
@

@t
ue þ @

@x
f ðueÞ ¼ e

@2

@x2 ue for ðx; tÞ 2 ðx�; xþÞ � Rþ; ð2:5Þ

ueðx; 0Þ ¼ u0ðxÞ for x 2 ðx�; xþÞ; ð2:6Þ
ueðx�; tÞ ¼ u�ðtÞ; ueðxþ; tÞ ¼ uþðtÞ for t 2 Rþ ð2:7Þ
converge a.e. to a function u belonging to BV space as e goes to zero and that the limit function u satisfies the boundary con-
dition (2.3) in the weak sense of (2.30). Also they proved the uniqueness of weak entropy solution for (2.1), (2.2) and (2.30).
Further LeRoux in an unpublished work [15] considered finite difference methods for (2.1)–(2.3) and proved that numerical
solutions converge to a function satisfying the same boundary condition (2.30). There are several papers [9,17,19] concerned
with the initial-boundary value problems of conservation laws by using the vanishing viscosity methods, finite difference
schemes and finite element methods.

When f is strictly convex i.e., when f 00 > 0, the boundary conditions (2.30) are equivalent to
either uðx�; tÞ ¼ �u�ðtÞ or � f 0ðuðx�; tÞÞP 0 and � f ðuðx�; tÞÞ 6 �f ð�u�ðtÞÞ;
where �u�ðtÞ ¼maxfu�ðtÞ; �ug with �u ¼ infuf ðuÞ.
3. Artificial boundary conditions and finite difference schemes

In order to compute the initial value problems of (1.1) and (1.2) numerically, we need to introduce two artificial bound-
aries, say for example x ¼ x� and x ¼ xþ with�1 < x� < xþ <1, which contain a finite computing domain, and two artificial
boundary conditions at the two boundaries. From the well-posedness of the initial-boundary problems given in the last sec-
tion we see that two boundary values of u at the artificial boundaries are needed to complete the proposal for the artificial
boundary conditions. By using the Lax’s explicit formulas to the initial value problems of convex conservation laws we can
calculate the boundary values of u at the artificial boundaries x ¼ x� explicitly.
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As observed by Lax [13,14] the exact formulas for uðx; tÞ can be obtained for the initial value problem of convex conser-
vation laws
@

@t
uþ @

@x
f ðuÞ ¼ 0 for ðx; tÞ 2 R � Rþ; ð3:1Þ

uðx; 0Þ ¼ u0ðxÞ for x 2 R; ð3:2Þ
where f ðuÞ is strictly convex, that is f 00ðuÞ > 0. The solution is constructed as follows. Since f is convex, f 0 is increasing and it
has inverse ðf 0Þ�1. Let g be a primitive function of the inverse of f 0 i.e.,
gðyÞ ¼
Z y

ðf 0Þ�1ðgÞdg ð3:3Þ
and Fðx; t; yÞ be
Fðx; t; yÞ ¼ tg
x� y

t

� �
þ
Z y

0
u0ðnÞdn; ð3:4Þ
where the initial data u0 is subject to
Fðx; t; yÞ ! 1 for jyj ! 1; ð3:5Þ
then the entropy solution u to the initial value poblem (3.1) and (3.2) is explicitly expressed by
uðx; tÞ ¼ ðf 0Þ�1 x� yðx; tÞ
t

� �
ð3:6Þ
for all ðx; tÞ such that Fðx; t; yÞ has a unique minimum point yðt; xÞ. This is true except in a set which is countable for fixed t,
and u is continuous in ðx; tÞ, where the minimum point is unique. In general
uðx� 0; tÞ ¼ ðf 0Þ�1 x� y�ðx; tÞ
t

� �
;

where y�ðx; tÞ is the largest (smallest) minimum point of Fðx; t; yÞ.
Here we have to point out that for the famous Burgers’ equation, the flux is
f ðuÞ ¼ u2=2;
f 0ðuÞ ¼ u and ðf 0Þ�1ðgÞ ¼ g. Therefore u is defined by
uðx; tÞ ¼ x� yðx; tÞ
t

ð3:7Þ
and Fðx; t; yÞ has the simple form
Fðx; t; yÞ ¼ ðx� yÞ2

2t
þ
Z y

0
u0ðnÞdn: ð3:8Þ
It is easy to show that if u0 satisfies
Z y

0
u0ðnÞdn ¼ oðy2Þ;
then (3.5) holds.
The above statements are proved by Hopf [8] for the Burgers’ equation and by Lax [13,14] for the convex conservation

laws.
By using the explicit formula (3.6) for the initial value problem we can get the boundary values of u at the artificial bound-

aries x ¼ x�:
uðx�; tÞ ¼ ðf 0Þ�1 x� � yðx�; tÞ
t

� �
; ð3:9Þ
where yðx; tÞ is the unique minimum of Fðx; t; yÞ for almost all ðx; tÞ. Thus we have now completed the proposal for the arti-
ficial boundary conditions, i.e., we have formulated the following initial-boundary value problem:
@

@t
uþ @

@x
f ðuÞ ¼ 0 for ðx; tÞ 2 ðx�; xþÞ � Rþ; ð3:10Þ

uðx; 0Þ ¼ u0ðxÞ for x 2 ðx�; xþÞ; ð3:11Þ
uðx�; tÞ ¼ uart

� ðtÞ; uðxþ; tÞ ¼ uart
þ ðtÞ for t 2 Rþ; ð3:12Þ
where the artificial boundary values uart
� ðtÞ are defined by (3.9):
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uart
� ðtÞ ¼ ðf 0Þ

�1 x� � yðx�; tÞ
t

� �
: ð3:13Þ
Now we consider the following three-point monotone difference schemes
vnþ1
j ¼ vn

j � k �f ðvn
j ;vn

jþ1Þ � �f ðvn
j�1;vn

j Þ
� �

ð3:14Þ
applied to the conservation laws (3.10), where the numerical flux function �f ðu;vÞ satisfies the consistence condition
�f ðv ;vÞ ¼ f ðvÞ
and the right hand of the difference schemes i.e.,
Hðu; v;wÞ � v � kð�f ðv ;wÞ � �f ðu;vÞÞ
satisfies the monotone conditions: Hðu;v ;wÞ is a nondecreasing function of each of its arguments, where k ¼ Dt=Dx and Dt
and Dx are time and space steps, respectively. Here vn

j are the numerical solutions, which approximate the exact solution
uðx; tÞ at the point ðxj; tnÞ, where xj ¼ jDx for j ¼ 0;�1;�2; . . . and tn ¼ nDt for n ¼ 0;1;2; . . . are space and time grid points,
respectively. The monotone difference schemes are of first order accuracy [6] and include several popular schemes such as
Lax–Friedrichs scheme [12], Godunov scheme [4] and Engquist–Osher scheme [3]. It is well known that the monotone
schemes approach BV-discontinuous solutions for the initial value problem of the scalar convection equation at a rate only
half in the L1-norm [11,20,18] and for the convex conservation laws the monotone schemes approximate piecewise constant
solutions with finitely many shock discontinuities at rate one in L1-norm [22].

For the initial-boundary value problem (3.10)–(3.12) we assume that x� ¼ L�Dx and xþ ¼ LþDx, where L� are two integers
and Dx ¼ ðxþ � x�Þ=ðLþ � L�Þ. The monotone schemes assume the average initial value as follows:
v0
j ¼

1
Dx

Z xjþ1=2

xj�1=2

u0ðnÞdn for j ¼ L�; L� þ 1; . . . ; Lþ; ð3:15Þ
where xj�1=2 ¼ ðj� 1=2ÞDx. Since the monotone difference schemes are quit similar to the viscosity methods (2.5)–(2.7), the
monotone schemes also assume the average boundary values in the strong sense
vn
L� ¼

1
Dt

Z tn

tn�1

uart
� ðsÞds for n ¼ 1;2; . . . ð3:16Þ
In most of numerical tests the discontinuous solutions are piecewise smooth functions with only finitely many discontinu-
ous points. For this kind of solutions, vn

j can assume the point-wise values, i.e.,
v0
j ¼ u0ðxjÞ ð3:17Þ
and
vn
L� ¼ uart

� ðtnÞ: ð3:18Þ
With the aid of the initial-boundary conditions (3.15) and (3.16) or (3.17) and (3.18) we can solve the difference schemes
(3.14) with j ¼ L� þ 1; . . . ; Lþ � 1 from n ¼ 1;2; . . . :

Remark. We have to point out that the numerical schemes assume the boundary values (3.16) or (3.18) at both of the
artificial boundaries and we don’t need to care if x� is inflow or outflow boundary. The convergence theorems of difference
schemes given in [15,9] make sure that the limit function of the difference schemes satisfies the boundary conditions in the
weak sense (2.30).

Of course the artificial boundary conditions (3.16) or (3.18) can be used by any other numerical schemes.
4. Computing the entropy solution by using the explicit formulas

In this section we will consider that the entropy solution uðx; tÞ to the initial value problem of convex conservation laws
(1.1) and (1.2) is solved numerically by using the explicit formulas (3.3), (3.4) and (3.6).

As described in the previous section the entropy solution to the initial value problem (1.1) and (1.2) is explicitly expressed
by
uðx; tÞ ¼ ðf 0Þ�1 x� yðx; tÞ
t

� �
; ð4:1Þ
where yðx; tÞ is the unique minimum point of Fðx; t; yÞ for almost all ðx; tÞ and Fðx; t; yÞ is defined by
Fðx; t; yÞ ¼ tg
x� y

t

� �
þ
Z y

0
u0ðnÞdn; ð4:2Þ
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with
gðyÞ ¼
Z y

ðf 0Þ�1ðgÞdg:
In order to find yðx; tÞ we can solve the problem
min
y

Fðx; t; yÞ ð4:3Þ
numerically by using the function y ¼ fminbndðfun; y1; y2Þ from MATLAB, where the function returns a value y that is a
local minimizer of the function which is described in fun in the interval y1 < y < y2. Since y1 and y2 have to be pro-
vided in the MATLAB program, we will give a possible interval ½y1; y2�. It follows from the expression (4.1) that
yðx; tÞ satisfies
yðx; tÞ ¼ x� taðuðx; tÞÞ; ð4:4Þ
where
aðuÞ ¼ f 0ðuÞ:
It is well known that the entropy solution uðx; tÞ to the initial value problem (1.1) and (1.2) is bounded by the initial data
inf
x

u0ðxÞ 6 uðx; tÞ 6 sup
x

u0ðxÞ
and hence, on account of (4.4) and (1.3), yðx; tÞ is bounded by
x� taðsup
x

u0ðxÞÞ 6 yðx; tÞ 6 x� taðinf
x

u0ðxÞÞ:
Therefore we can choose
y1 ¼ x� taðsup
x

u0ðxÞÞ �M and y2 ¼ x� taðinf
x

u0ðxÞÞ þM; ð4:5Þ
where M is some positive constant. For given ðx; tÞ the minimizer yðx; tÞ of Fðx; t; yÞ can be solved numerically by the function
‘‘fminbnd” with the parameters y1 and y2 defined by (4.5) and then uðx; tÞ is obtained by (4.1).

Remark. Since ‘‘fminbnd” can only solve for a local minimizer of Fðx; t; yÞ, sometimes we have to divide the interval ½y1; y2�
into two or three subintervals, find a local minimizer on each subinterval and choose the global minimizer from those local
minimizers.

Remark. We make some comments on the accuracy of the min-F procedure. The termination tolerance ‘‘TolX” on y for the
function ‘‘fminbnd” is an optional parameter. It follows from (4.1) that a tolerance TolX on yðx; tÞ induces an error in uðx; tÞ,
which is OðTolX=tÞ. In order to match with the numerical scheme used in the computational domain we have to choose the
tolerance to be compatible with the accuracy of the numerical scheme. More precisely, if the numerical scheme is of rth
order accuracy, then the tolerance should be in proportion to the rth power of the mesh size, i.e., TolX ¼ OðDxrÞt where
Dx is the spatial mesh size. Since the Lax–Friedrichs scheme is a first order accurate scheme we choose TolX ¼ OðDxÞt in
the numerical computations given in the next section.

Remark. If the initial data u0ðxÞ 2 C1, then there exists a smooth solution uðx; tÞ 2 C1 for 0 < t < T , where T is defined by
1=T ¼ supxf�u00f 00ðu0Þg, and the characteristic method gives the relationship
u� u0ðx� taðuÞÞ ¼ 0; ð4:6Þ
where aðuÞ ¼ f 0ðuÞ. Therefore for smooth u0 we can use (4.6) to obtain the local smooth solution uðx; tÞ for 0 < t < T . Harten
et al. [5] use the relationship (4.6) to compute the local smooth solution to the Burgers’ equation with u0ðxÞ ¼ sinðpxÞ and use
the smooth solution as boundary data in numerical experiments.

Notice that the solver given by (4.1) and (4.2) can compute the entropy solutions globally for 0 < t <1. We will use the
solver in next section to computing both the artificial boundary values and the entropy solutions of the examples.
5. Numerical examples

In this section we will compute two numerical examples, where the initial data are periodic or having a compact support,
by using the proposed artificial boundary conditions. We also consider an example, of which the initial data are neither peri-
odic nor having a compact support. There is no any numerical result available for this kind of initial value problems, but our
proposed artificial boundary conditions can be used for those problems. In all of the numerical tests we simply use the Lax–
Friedrichs monotone difference scheme:
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vnþ1
j ¼

vn
jþ1 þ vn

j�1

2
� k

2
f ðvn

jþ1Þ � f ðvn
j�1Þ

� �
; j ¼ L� þ 1; . . . ; Lþ � 1; ð5:1Þ

vn
L� ¼ vart

� ðtnÞ; vn
Lþ ¼ uart

þ ðtnÞ; ð5:2Þ
v0

j ¼ u0ðxjÞ; ð5:3Þ
where x� ¼ L�Dx are artificial boundaries, uart
� ðtÞ are artificial boundary values given by (3.13), Dx ¼ ðxþ � x�Þ=ðLþ � L�Þ;u0ðxÞ

is the initial data and k ¼ Dt=Dx satisfies Courant–Friedrichs–Lewy condition
k < 1= sup
x
jf 0ðu0ðxÞÞj: ð5:4Þ
It is known that under the stable condition (5.4) the Lax–Friedrichs scheme (5.1) is a monotone difference scheme with a
numerical flux �f given by
�f ðu; vÞ ¼ f ðuÞ þ f ðvÞ
2

� 1
2k
ðu� vÞ:
The explicit difference scheme (5.1) with the boundary conditions (5.2) and initial condition (5.3) can be solved from
n ¼ 1;2; . . .

Of course, any more accurate and efficient numerical methods can be used with the proposed artificial boundary
conditions.

Example 1. We consider the initial value problem of Burgers’ equation
@

@t
uþ @

@x
u2

2

� �
¼ 0; ð5:5Þ

uðx;0Þ ¼ u0ðxÞ; ð5:6Þ
where u0 is a period function
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Numerical ‘‘�” and exact ‘‘—” solution to (5.5) and (5.7) with Dx ¼ 2:8=200 at times t ¼ 0:6; t ¼ 1:1; t ¼ 1:6 and t ¼ 2:1. There is no any spurious wave
d from the artificial boundaries x� ¼ �1:2 and xþ ¼ 1:6.
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u0ðxÞ ¼ 1þ 1
2

sinðpxÞ; ð5:7Þ
with period x 2 ½�1;1Þ.

This is a widely used example to test numerical methods by using periodic conditions, where uð�1; tÞ ¼ uð1; tÞ is speci-
fied, and the computational domain is restricted within [�1,1]. Since our exact artificial boundary conditions can be used to
any prescribed artificial boundaries, i.e., x ¼ x�, we may choose x� ¼ �1:2 and xþ ¼ 1:6, where [�1.2,1.6] is not a period for
the initial data. It follows from the expression (4.2) and the initial date (5.7) that
Fðx; t; yÞ ¼ ðx� yÞ2

t
þ y� cosðpyÞ � 1

2p

� �
and the artificial boundary values at x ¼ �1:2 and x ¼ 1:6 are given by
uart
� ðtÞ ¼

�1:2� yð�1:2; tÞ
t

and uart
þ ðtÞ ¼

1:6� yð1:6; tÞ
t

;

where yð�1:2; tÞ and yð1:6; tÞ are solved from (4.3). Fig. 1 shows the numerical solution to the initial value problem (5.5) and
(5.7) computed with the Lax–Friedrichs scheme (5.1), (5.2) and (5.3), and the exact solution is computed with the explicit
formulas (3.7), (3.8) and (4.3). Here Dx ¼ 2:8=200; k ¼ Dt=Dx ¼ 0:5. From the figure we can see that a shock wave crosses
the left artificial boundary x ¼ �1:2 in between t ¼ 1:6 and t ¼ 2:1, but no any numerical oscillation occurs at the artificial
boundary.

Example 2. The second example is the initial value problem (5.5) and (5.6) with an initial data u0 having a compact support:
u0ðxÞ ¼
1; if x 2 ð0:5;1:5Þ;
0; otherwise:

�
ð5:8Þ
Since the initial data u0 has a compact support (0.5,1.5), the zero solution will not be disturbed outside of the region,
which is included by two straight lines x ¼ 0:5þ tminxu0ðxÞ and x ¼ 1:5þ tmaxxu0ðxÞ for t P 0. In the traditional numerical
methods two artificial boundaries are set outside of this region and zero boundary conditions are applied to the two bound-
aries. For large time t, we have to choose two artificial boundaries far apart and to calculate the difference schemes on a very
large computational domain. Our proposed artificial boundaries will not be subject to this restriction and can be set at any
places. In this example we set x� ¼ 0 and xþ ¼ 2. It follows from the expression (4.2) and the initial date (5.8) that
Fðx; t; yÞ ¼ ðx� yÞ2

2t
þ

0; y 6 0:5;
y� 0:5; y 2 ð0:5;1:5Þ;
1; y P 1:5

8><
>:
and the artificial boundary values at x ¼ �0 and x ¼ 2 are given by
uart
� ðtÞ ¼

0� yð0; tÞ
t

and uart
þ ðtÞ ¼

2� yð2; tÞ
t

;

where yð0; tÞ and yð2; tÞ are solved from (4.3). Fig. 2 shows the numerical solution to the initial value problem (5.5) and (5.8)
computed with the Lax–Friedrichs scheme (5.1), (5.2) and (5.3), and the exact solution is computed with the explicit formu-
las (3.7), (3.8) and (4.3). In the numerical computations k ¼ 0:75 and Dx ¼ 2=180. From the figure we can see that there no
any spurious numerical oscillation occurs at the artificial boundaries x� ¼ 0 and xþ ¼ 2.

In order to test the L1-convergence rate we compute Examples 1 and 2 by using refining meshes and the results are shown
on Table 1, where l1-error is defined by
kvDxð	; tnÞ � uð	; tnÞkl1 ¼
XLþ
j¼L�

jvn
j � uðxj; tnÞjDx;
with x� ¼ L�Dx. From the table we see that the convergence rates for both Examples 1 and 2 approach one and the conclu-
sion coincides with the theoretical analysis given in [22,21,17].

Example 3. The third example is the initial value problem (5.5) and (5.6) with an initial data u0 defined by
u0ðxÞ ¼ ð1þ xÞ sinðpxÞ; ð5:9Þ
which is neither periodic nor having a compact support.

Since the initial data u0 is neither periodic nor having a compact support, so far there is no numerical computation avail-
able for this kind of initial value problems. But our artificial boundary conditions can deal with this kind of problems and we
can set the two artificial boundaries at any locations, say for example x� ¼ �1 and xþ ¼ 1:6.

It follows from the expression (4.2) and the initial date (5.9) that



Table 1
l1-Errors and convergence rates for the numerical solutions vDs .

t ¼ 1:1 Example 1 t ¼ 0:8 Example 2

Dx l1-Error l1-Rate Dx l1-Error l1-Rate

0:28=22 0.2108 – 0:10=23 0.0658 –

0:28=23 0.1200 0.8129 0:10=24 0.0362 0.8607

0:26=24 0.0623 0.9462 0:10=25 0.0212 0.7759

0:28=25 0.0300 1.0544 0:10=26 0.0115 0.8780

0:28=26 0.0147 1.0329 0:10=27 0.0065 0.8143

0:28=27 0.0073 1.0024 0:10=28 0.0035 0.8972

0:28=28 0.0036 1.0240 0:10=29 0.0020 0.8460

0:28=29 0.0016 0.9978 0:10=210 0.0010 0.9163
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Fig. 2. Numerical ‘‘�” and exact ‘‘—” solution to (5.5) and (5.8) with Dx ¼ 2=180 at times t ¼ 0:6; t ¼ 0:8; t ¼ 1:0 and t ¼ 1:2. There no any spurious
numerical oscillation occurs at the artificial boundaries x� ¼ 0 and xþ ¼ 2.
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Fðx; t; yÞ ¼ ðx� yÞ2

2t
þ 1� ð1þ yÞ cosðpyÞ

p
þ sinðpyÞ

p2

� �
and the artificial boundary values at x ¼ �1 and x ¼ 1:6 are given by
uart
� ðtÞ ¼

�1� yð�1; tÞ
t

and uart
þ ðtÞ ¼

1:6� yð1:6; tÞ
t

;

where yð�1; tÞ and yð1:6; tÞ are solved from (4.3). Fig. 3 shows the numerical solution to the initial value problem (5.5) and
(5.9) computed with the Lax–Friedrichs scheme (5.1), (5.2) and (5.3), and the exact solution is computed with the explicit
formulas (3.7), (3.8) and (4.3). In the numerical computations k ¼ 0:40 and Dx ¼ 2:6=150. From the figure we can see that
the artificial boundaries x� ¼ �1:0 and xþ ¼ 1:6 do not give rise to any spurious wave reflection.
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Fig. 3. Numerical ‘‘�” and exact ‘‘–” solution to (5.5) and (5.9) with Dx ¼ 2:6=150 at times t ¼ 0:2; t ¼ 0:5; t ¼ 0:8 and t ¼ 1:1. There the artificial boundaries
x� ¼ �1:0 and xþ ¼ 1:6 do not give rise to any spurious wave reflection.

3800 Z.-h. Teng / Journal of Computational Physics 229 (2010) 3792–3801
6. Conclusions

In this paper we proposal an artificial boundary condition for computing initial value problems of convex conservation
laws. The approach adopted is to apply the exact solution on the artificial boundaries. For scalar convex conservation laws,
such a solution can be obtained by the Lax-formulas, a minimization of a functional involving flux function and primitive of
the initial data, and the solution can be calculated using a MATLAB routine.

Over years some efforts are made to extend Lax-formulas to the case with non-convex flux. For example, Kunik [10]
proves a solution formula for a non-convex scalar hyperbolic conservation law with monotone initial data. Therefore it is
easy to extend the result given in this paper to the non-convex case.
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